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Abstract—This paper presents buckling analysis of cscs and csss rectangular plates by split-

deflection method. The assumption was that the deflection, w is split into  ; where the 

deflection was taken as the product of these two components in x and y directions. The study 
formulated the total potential energy function from principles of theory of elasticity. By direct 

variation, the energy function was minimized and equations for critical buckling loads were 

obtained. Two examples, one with edges 1 and 3 clamped, edges 2 and 4 simply supported and the 
other with edges 2, 3 and 4 simply supported and edge 1 clamped were used to test this method. 

The use of polynomial functions for both x and y components of deflection was adopted. Critical 

buckling loads (in non- dimensional forms) of the two examples for aspect ratios ranging from 1.0 

to 2.0 (at increment of 0.1) were determined and compared with the values from previous study 
(Ibearugbulem et, al., 2014). From the comparison, it was observed that the maximum percentage 

difference of 0.196 was recorded. The small values of percentage difference from this study show 

that this present method is sufficient and reliable for classical plate theory (CPT) buckling analysis 
of rectangular plates. 

 

Index Terms—Critical buckling load, split-deflection, work-error, energy function, polynomial 

function. 

INTRODUCTION 

Classical plate theory (CPT) buckling analysis has dominated energy methods such as Raleigh, 

Ritz, Galerkin, minimum potential energy, etc (Ugural, 1999, Ventsel and Krauthammer, 2001 and 

Ibearugbulem et al., 2014).  Most of these energy methods are characterized by single deflection 

(un-separated) function. For instance, let us look at the energy function of work error method 

(Ibearugbulem et al., 2014): 

 
Most academic works on CPT analysis of rectangular plates as seen from the literature rely on this 

single orthogonal function (Hutchinson, 1992, Jianqiao, 1994, Ugural, 1999, Ventsel and 

Krauthammer, 2001, Wang et al., 2002, Taylor and Govindjee, 2004, Szilard, 2004, Jiu et al., 2007, 

Erdem et al., 2007, Ezeh et al., 2013, Ibearugbulem, 2014). Evidently, it can be affirmed that all 

energy functions currently in use in CPT buckling analysis are based on this single orthogonal 

deflection function. This means that none of the existing energy functions for buckling analysis in 

CPT has used a deflection function that is classically separated into two independent and distinct 

functions (w = wx * wy) where wx and Wy are both polynomial functions or wx may be polynomial 

while wy may be trignometry. The rationale for this adaptation is to help the analyst who might 

have difficulty in obtaining single orthogonal function for a plate of a particular boundary 

condition. In this case, the analyst who may have easy access to deflection equations for beams of 

any boundary condition can find this proposed method very handy. 

ASSUMPTIONS 

1. Basic- The hypothesis here is that the general deflection, w is split into wx and wy. That is, the 

split-deflection function is given as: 
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where the wx and wy components of the deflection are defined as: 

 

 

 .  

 
Applying split-deflection and substituting equations (2) and (3) into equation (1) gives: 

 

 
 

2. In-Plane Displacements- From the hypothesis that vertical shear strains are zero for classical 

plates and making use of split-deflection approach, we obtain: 

 

 
 

3. Strain Deflection Relationship- Upon differentiating equations (5 and (6), the three in-plane 

strains of CPT are obtained: 
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4. Stress-Strain Relationship-The CPT constitutive equations for plane stress plates are: 

 
 

 
 

 
DERIVATION OF CRITICAL BUCKLING LOAD EQUATION USING SPLIT 

DEFLECTION METHOD 

1. Stress-Deflection Relationship- When equations (7), (8) and (9) are substituted into 

equations (10), (11) and (12) as appropriate, the split-deflection stress-deflection equations are 

obtained as: 

 

 
 

 

 
 

2. Total Potential Energy- Strain energy is commonly defined as: 

 
For buckling analysis, the external work in x direction is given as: 

 

 
 

That is,  
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When equations (4) to (6) are substituted into equation (7) we obtain strain energy – deflection 

equation form as: 

 

 
 

Adding equations (17) and (18) give the total potential energy function as: 

 

 

 
 

When equations (2) and (3) are substituted into equation (19) we obtain: 

 

 
Using non-dimensional form of axes R and Q, equation (20) shall be written as: 
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Here a, b and P are the plate lengths in x and y axes and long span- short span aspect ratio 

respectively. 

When equations (21), (22) and (23) are substituted into equation (20) we obtain:  

 

 

 
 
3. Direct Variation of Total Potential Energy- For direct variation, equation (24) shall be 

differentiated with respect to the deflection coefficient, A and the outcome is: 

 

 

 
That is  
 

 
 

Equation (25) is the direct governing equation of rectangular plate under buckling using work-

error. Rearranging equation (25) and making the critical buckling load, Nx the subject of the 

equation gives: 
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Where 

 
 

 
 

 
 

and 

 

 
APPLICATION  

Analysis of a classical rectangular thin isotropic plate with: 

1)  Edges 1 & 3 clamped; edges 2 & 4 simply supported using polynomial functions 

respectively for wx and wy.  

2) Edge 1 clamped, edges 2, 3 and 4 simply supported using only polynomial function for 

both wx and wy 

 

1. Edges 1 & 3 clamped; edges 2 & 4 simply supported   rectangular plate 

The deflection equation, w and shape function (Ibearugbulem, et.al, 2014) for CSCS rectangular 

plates are  

  

Using split-deflection approach, we have 
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From equations (32) and (33), shape (profile) functions h1 and h2 are: 

 

 
 

 
When we integrate these profile functions, we obtain: 

 
 

 

 

 

 

 
Similar procedure was adopted to obtain the values 
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and 
 

 
 
Substituting equations (39) to (39) into equation (26) gives 

 

 

 

 
 

2. Edge 1 clamped & edges 2, 3 & 4 simply supported rectangular plate 

The deflection equation, w and the shape function H for CSSS rectangular plates are 

 

  

 

Using split-deflection approach, we have 

 

 
 

 
 

From equations (42) and (43), h1 and h2 are: 

 
 

 
 

With these equations, we obtain: 
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Substituting equations (46) to (49) into equation (26) gives 
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RESULTS 

The non-dimensional form of the critical buckling loads for different aspect ratios for cscs and csss 

plates are shown on tables 1 and 2. Figures 1 and 2 present same result in graphical form.  

 

Table 1: Non-dimensional form of critical buckling load of CSCS isotropic thin plate  

Aspect 

ratio, P 

Critical buckling load, Nx  

Percentage difference Present 

Past 

(Ibearugbulem et al., 2014) 

1 84.95 85.06494 0.135 

1.1 78.16 78.27207 0.143 

1.2 73.70 73.80192 0.138 

1.3 70.92 71.0267 0.150 

1.4 69.426 69.53446 0.1560 

1.5 68.933 69.04582 0.163 

1.6 69.248 69.36585 0.170 

1.7 70.231 70.35524 0.176 

1.8 71.780 71.91225 0.184 

1.9 73.821 73.96119 0.1895 

2.0 76.295 76.44481 0.1960 

 

                                                 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Figure 1.0:  The Graph of Non-Dimensional Buckling Load against Aspect Ratio 

(CSCS plate). 
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Table 2: Non-dimensional form of critical buckling load of CSSS isotropic thin plate  

Aspect 
ratio, P 

Critical buckling load, Nx  

Percentage difference Present 
Past 

(Ibearugbulem et al., 2014) 

1 56.810 56.80234 0.014 

1.1 54.687 54.68031 0.013 

1.2 53.766 53.76084 0.018 

1.3 53.751 53.74698 0.007 

1.4 54.447 54.44388 0.006 

1.5 55.721 55.71938 0.004 

1.6 57.482 57.4813 0.002 

1.7 59.663 59.66373 0.002 

1.8 62.217 62.21855 0.003 

1.9 65.108 65.10996 0.003 

2.0 68.308 68.31088 0.004 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 

  
 

 

 
 

Figure 2.0:  The Graph of non-dimensional Buckling Load against Aspect Ratio 

(CSSS plate) 
 

In the case of CSCS thin plates, that is table 1, for the aspect ratio of 1.0, the buckling load was 

84.95. For the aspect ratio of 2.0, the buckling load was 76. 295. From the table; it can be observed 

that as the aspect ratio increased from 1.0 to 2.0, the buckling load decreased from 84.95 to 76.295. 
Therefore, for an increment of 1.0 (1.0-2.0) aspect ratio, there was a decrease of 8.66 non-

dimensional form of buckling load. 

 
Table 2 shows results for CSSS Isotropic Thin Plates. For the aspect ratio of 1.0, the buckling load 

was 56.81. It decreased to a point corresponding to the aspect ratio of 1.5. It gradually increased 

again at aspect ratio of 2.0. Therefore, for an aspect ratio of 1.0 to 1.5, there was a decrease of 
1.089 non-dimensional form of buckling load. For the aspect ratio of 1.6 to 2.0, there was an 
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increase of 10.826 non-dimensional form of buckling load. This variation in buckling load can be 

attributed to the plate boundary configuration and restraint conditions. 

 

From the graph of Figure 1.0, the buckling load,  graph becomes parabolic at an aspect ratio of 

1.5. Obviously, this could be attributed to the boundary condition (restraint) of the plate. Which 

means for different plate geometry/configuration, the buckling load, ( ) vis-a-viz, the aspect 

ratio changes. 
In Figure 2.0, at the origin of the curve, the aspect ratio was 1.0 with non-dimensional buckling 

load of 56. 810. The graph descended gradually to non-dimensional buckling load of 55.721. This 

corresponded to an aspect ratio of 1.5. The descent of the curve was very steep. The ascent 

corresponds to the aspect ratio of 1.6 and continues to 2.0 with non-dimensional buckling load of 
68.308. This variation in buckling load can be attributed to the plate boundary configuration and 

restraint conditions.  

 

CONCLUSIONS AND RECOMMENDATIONS 

  A critical examination of the tables reveals that the maximum percentage difference between the 

values from the present study and those from Ibearugbulem et, al. (2014) is 0.196.  This value of 
the difference may be due to round off error. Statistically, the implication is, that no difference 

exists between the two sets of values. Thus, one can infer that the procedure, the profile functions 

and the energy functions formulated in this present study are reliable and sufficient in CPT 

buckling analysis of rectangular plates. From the findings of this study, this method is 
recommended for stability analysis of CPT plates. 

 A further study for use of the present method in refined plate theory analysis (RPT) is also 

recommended. 
 

This study therefore developed an alternative equation option to the single orthogonal deflection 

equations already in use in plates analysis. It successfully applied the split-deflection method in the 

analysis of thin isotropic rectangular plates- that is a new plate buckling concept where a 
rectangular plate is split into two independent and distinct components x and y, where the 

deflection of the rectangular plate becomes the product of these two components x and y 

.  
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